Davis, M. I. \& Muecke, T. W. (1970). J. Phys. Chem. 74, 1104-1108.
Ehrig, V. \& Seebach, D. (1975). Chem. Ber. 108, $1961-$ 1973.

Hendrickson, J. B. (1961). J. Am. Chem. Soc. 83, 45374547.

Henslee, W. H. \& Davis, R. E. (1975). Acta Cryst. B31, 1511-1519.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521-523.

Main, P., Woolfson, M. M. \& Germain, G. (1971). multan, A Computer Program for the Automatic Solution of Crystal Structures. Univ. of York, England.
Mazhar-ul-Haque \& Caughlan, C. N. (1967). J. Chem. Soc. B, pp. 355-359.
Mazhar-ul-Haque \& Caughlan, C. N. (1969). J. Chem. Soc. B, pp. 956-960.
Riley, P. E. \& Davis, R. E. (1976). Acta Cryst. B32, 381386.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

3-Diazoindazole

By I. Leban,* B. Stanovnik and M. Tišler Chemistry Department, University of Ljubljana, 61000 Ljubljana, Yugoslavia

(Received 2 August 1977; accepted 2 September 1977)

Abstract

C}_{7} \mathrm{H}_{4} \mathrm{~N}_{4}\), FW 144•1, monoclinic, space group $P 2_{1} / n, a=6 \cdot 070(1), b=13 \cdot 140(1), c=8 \cdot 173$ (1) \AA, $\beta=97.10(2)^{\circ}, \quad V=646.9 \AA^{3}, \quad D_{m}=1.50(2)$ (flotation), $D_{x}=1.480 \mathrm{~g} \mathrm{~cm}^{-3}, \mu\left(\mathrm{Cu} K_{\mathrm{c}}\right)=8.316$ $\mathrm{cm}^{-1}, Z=4$, at $20(1)^{\circ} \mathrm{C}$. The distances in the group $\geq \mathrm{C}-\mathrm{N}-\mathrm{N}$ were found to be 1.338 (3) \AA for $>\mathrm{C}-\mathrm{N}$ and $1 \cdot 110(3) \AA$ for $\mathrm{N}-\mathrm{N}$, thus suggesting the carbanionic character $>\mathrm{C}^{\ominus}-\mathrm{N}^{\oplus} \equiv \mathrm{N}$:. Essentially planar molecules are packed nearly parallel to the $a c$ plane.

Introduction. 3-Diazoindazole (hereinafter DIN) was prepared according to the procedure described by Bamberger (1899). Transparent pale-yellow needles elongated along a were crystallized from n-heptane. The systematically absent reflexions ($0 k 0: k=2 n+1$ and $h 0 l: h+l=2 n+1$) on Weissenberg photographs and the centric distribution of $|E|$ values $\left(\left\langle E^{2}\right\rangle=\right.$ $1.000 ;\langle | E^{2}-1| \rangle=0.996 ;\langle | E| \rangle=0.795$) indicate space group $P 2_{1} / n$ (No. 14). Unit-cell dimensions were obtained from a least-squares fit of the 2θ values of 30 reflexions measured on a CAD-4 diffractometer $[\mathrm{Cu}$ $K\left(r\right.$, radiation, $\left.\lambda=1.54051 \AA, t=20(1)^{\circ} \mathrm{C}\right]$. A single crystal with approximate dimensions $0.2 \times 0.2 \times 0.5$ mm was used for data collection on an automatic computer-controlled Enraf-Nonius CAD-4 four-circle diffractometer with Ni -filtered $\mathrm{Cu} K_{\mathrm{c}}$ radiation. Reflexions were scanned in the $\omega-2 \theta$ mode (moving crystalmoving counter) with a variable scan rate. Details of data collection and reduction are shown in Table 1. The compound is sensitive to light and the crystal decayed

[^0]in the X-ray beam during the data collection. The data were corrected for variation in reference reflexions and Lorentz-polarization effects. No absorption corrections were made.

The structure was solved by direct methods with MULTAN 74 (Main, Woolfson, Lessinger, Germain \& Declercq, 1974). An E map with the highest cumbined figure of merit CFOM ($3 \cdot 000$) obtained with the unit weighting of ABSFOM (1-137), $\psi_{0}(322)$ and RESID (16.78), computed with 200 phases $(|E|>1.40)$, revealed the positions of all the heavy atoms. The

Table 1. Data collection summary for DIN

Temperature (${ }^{\circ} \mathrm{C}$)	20 (1)
Diffractometer	CAD-4, automatic, four-circle
Radiation	$\mathrm{Cu} K \bar{\pi}$ (Ni -filtered) $(\bar{\lambda}=1.5418 \AA)$
Scan method	$\omega-2 \theta$
2θ scan width (${ }^{\circ}$)	$0.6+0.2 \tan \theta$
Scan rate (${ }^{\left(\mathrm{min}^{-1} \text {) }\right.}$	Minimum: 1-3; maximum: 20.1
Background	$\frac{1}{4}$ of the scan time at each of the scan limits
$2 \theta_{\text {max }}\left({ }^{\circ}\right.$)	150
Maximum scan time (s)	45
Aperture (mm)	$2.5+0.9 \tan \theta$
Reference reflexions	121, 131, 141
Intensity decrease (\%)	24.2
Measured reflexions	3560
Averaged reflexions	1328
Mean discrepancy on I (\%)	$3 \cdot 1$ for 3380 reflexions
Observed reflexions	783
Unobserved reflexions	545 [$I<3 \sigma(I)$)
$\sigma(l)$ base	Counting statistics
Linear absorption	8.316 for Cu Kar

Table 2. Refinement summary
Final refinement cycle

Scale factor (k)	0.735
$R=\Sigma\|\Delta F\| / \sum\left\|F_{o}\right\|$	0.040
$R_{w}=\left[\Sigma w(\Delta F)^{2} / \Sigma w F_{o}^{2}\right]^{1 / 2}$	0.049
Average shift/error	0.031
Maximum shift/error	0.176
Data (m)-to-variable (n) ratio	9.40
$\left[\Sigma w(\Delta F)^{2} /(m-n)\right]^{1 / 2}$	0.439
Final difference map	
\quad Maximum $\Delta \rho\left(\mathrm{e}^{-3}\right)$	0.20

Table 3. Final fractional coordinates ($\times 10^{4}$; for H $\times 10^{3}$) with standard deviations in parentheses

	x	y	z
$\mathrm{~N}(1)$	$2114(3)$	$4267(2)$	$7239(2)$
$\mathrm{N}(2)$	$3544(3)$	$4234(2)$	$8578(2)$
$\mathrm{N}(3)$	$7323(3)$	$3858(2)$	$9252(2)$
$\mathrm{N}(4)$	$8810(4)$	$3833(1)$	$10190(3)$
$\mathrm{C}(3)$	$5528(3)$	$3895(2)$	$8125(2)$
$\mathrm{C}(3 \mathrm{a})$	$5378(3)$	$3698(2)$	$6410(2)$
$\mathrm{C}(4)$	$6779(4)$	$3371(2)$	$5285(3)$
$\mathrm{C}(5)$	$5895(4)$	$3323(2)$	$3656(3)$
$\mathrm{C}(6)$	$3703(4)$	$3613(2)$	$3132(3)$
$\mathrm{C}(7)$	$2307(4)$	$3932(2)$	$4230(3)$
$\mathrm{C}(7 \mathrm{a})$	$3167(3)$	$3963(2)$	$5903(2)$
$\mathrm{H}(4)$	$824(5)$	$319(2)$	$566(3)$
$\mathrm{H}(5)$	$684(5)$	$308(2)$	$284(4)$
$\mathrm{H}(6)$	$316(5)$	$360(2)$	$199(3)$
$\mathrm{H}(7)$	$76(5)$	$417(2)$	$385(3)$

structure refinement was by full-matrix least squares, minimizing the function $\Sigma w\left(F_{o}-k F_{c}\right)^{2}$, where the weighting function was determined empirically: $w=$ $w_{F} w_{S}$, where $w_{F}\left(\left|F_{o}\right|<2 \cdot 5\right)=\left(\left|F_{o}\right| / 2 \cdot 5\right)^{2}, w_{F}\left(\left|F_{o}\right|>\right.$ $14.0)=\left(14.0 /\left|F_{o}\right|\right)^{3}, w_{F}\left(2.5<\left|F_{o}\right|<14.0\right)=1.0$; and $w_{S}(\sin \theta<0.5)=(\sin \theta / 0.5)^{2.5}, w_{S}(\sin \theta>0.9)=$ $(0.9 / \sin \theta), w_{s}(0.5<\sin \theta<0.9)=1.0$. All the H atoms were located in a difference Fourier map. They were included in the refinement with isotropic temperature factors. A final difference electron density map was featureless. Final refinement parameters are given in Table 2. Atomic scattering factors for H were those of Stewart, Davidson \& Simpson (1965) and for other atoms those of Cromer \& Mann (1968). All calculations were carried out on the CDC Cyber 72 computer at RRC Ljubljana. The XRAY 72 system of crystallographic programs (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972) was used.

The final atomic coordinates are in Table 3.*

[^1]Discussion. The X-ray structure determination of DIN was undertaken because there is little information on bond distances in heterocyclic diazo compounds. Recently, the crystal structures of two diazocarbonyl compounds (5-diazo-6-methoxy-6-hydrouracil and 2^{\prime}-deoxy-5-diazo-6-hydro- $O^{6}, 5^{\prime}$-cyclouridine hemihydrate) have been determined (Abraham, Cochran \& Rosenstein, 1971). The $\mathbf{C}-\mathrm{N}$ bond distances in the $>\mathrm{C}-\mathrm{N}-\mathrm{N}$ group $(1.332$ and $1.308 \AA$) were found to be intermediate between a double and a single bond and significantly shorter than the corresponding average $\mathrm{C}-\mathrm{N}$ bond length $[1.40(2) \AA$] found in aromatic diazonium compounds (Abraham, Cochran \& Rosenstein, 1971, and references therein). However, these distances are close to the values of aliphatic diazo compounds: $1.32 \AA$ in diazomethane (Cox, Thomas \& Sheriden, 1958) and 1.313 (2) \AA in 1,4-bis(diazo)-2,3butanedione (Hope \& Black, 1972). The $\mathrm{N}-\mathrm{N}$ distances of the diazo groups in the two compounds were found to be 1.113 and $1.120 \AA$ respectively. These results suggested a 'carbanionic' dipolar character, $>\mathrm{C}^{\ominus}-\mathrm{N}^{\oplus}=\mathrm{N}$:, rather than $\quad \triangle \mathrm{C}-\mathrm{N}^{\oplus} \equiv \mathrm{N}$: or $>\mathrm{C}-\mathrm{N}^{\oplus}=\mathrm{N}^{\ominus}$:.
Fig. 1 shows a molecule of DIN together with the values of the interatomic bond lengths. Bond distances and angles with estimated standard deviations are given in Table 4. The distances $\mathrm{C}(3)-\mathrm{N}(3)[1.338$ (3) $\AA]$ and $\mathrm{N}(3)-\mathrm{N}(4) \quad[1 \cdot 110(3) \AA]$ observed in DIN also demonstrate the substantial 'carbanionic' character of the group $>\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{N}(4)$. All the other bond lengths are intermediate between double and single bonds, thus indicating the presence of considerable conjugation in this heterocyclic compound.

The indazole part of DIN is planar, and is described by the equation: $0.3022 X+0.9441 Y-0.1678 Z=$ $4.7096 \AA$, where $X=a x \sin \beta, Y=b y$ and $Z=$ $a x \cos \beta+c z$. The largest deviations from the leastsquares plane are $-0.021,0.023,0.022$ and $-0.022 \AA$ for $\mathrm{N}(1), \mathrm{C}(3), \mathrm{C}(6)$ and $\mathrm{C}(7 \mathrm{a})$ respectively, whereas the displacements for $N(3)$ and $N(4)$ are 0.151 and 0.264 Å. The separate six- and five-membered rings are

Fig. 1. A molecule of DIN viewed along the normal to the mean plane. The atoms are represented by thermal ellipsoids drawn at the 50% probability level (Johnson, 1965).

Fig. 2. A stereoscopic view of the unit cell along [100].

Table 4. Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$

$\mathrm{N}(1)-\mathrm{N}(2)$	$1.310(3)$	$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(4)$	$1.395(3)$
$\mathrm{N}(1)-\mathrm{C}(7 \mathrm{a})$	$1.391(3)$	$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(7 \mathrm{a})$	$1.399(3)$
$\mathrm{N}(2)-\mathrm{C}(3)$	$1.376(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.374(3)$
$\mathrm{N}(3)-\mathrm{N}(4)$	$1.110(3)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.399(3)$
$\mathrm{C}(3)-\mathrm{N}(3)$	$1.338(3)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.374(3)$
$\mathrm{C}(3)-\mathrm{C}(3 \mathrm{a})$	$1.418(3)$	$\mathrm{C}(7)-\mathrm{C}(7 \mathrm{a})$	$1.402(3)$
$\mathrm{C}(4)-\mathrm{H}(4)$	$0.93(3)$	$\mathrm{C}(6)-\mathrm{H}(6)$	$0.95(3)$
$\mathrm{C}(5)-\mathrm{H}(5)$	$0.98(3)$	$\mathrm{C}(7)-\mathrm{H}(7)$	$1.00(3)$
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(7 \mathrm{a})$	$108.9(2)$	$\mathrm{C}(4)-\mathrm{C}(3 \mathrm{aa})-\mathrm{C}(7 \mathrm{a})$	$121.5(2)$
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$107.3(2)$	$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(4)-\mathrm{C}(5)$	$117.1(2)$
$\mathrm{N}(4)-\mathrm{N}(3)-\mathrm{C}(3)$	$179.6(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$121.8(2)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{N}(3)$	$119.5(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$121.6(2)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(3 \mathrm{a})$	$111.9(2)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(7 \mathrm{a})$	$117.4(2)$
$\mathrm{N}(3)-\mathrm{C}(3)-\mathrm{C}(3 \mathrm{a})$	$128.4(2)$	$\mathrm{N}(1)-\mathrm{C}(7 \mathrm{a})-\mathrm{C}(3 \mathrm{a})$	$110.9(2)$
$\mathrm{C}(3)-\mathrm{C}(3 \mathrm{a})-\mathrm{C}(4)$	$137.6(2)$	$\mathrm{N}(1)-\mathrm{C}(7 \mathrm{a}-\mathrm{C}(7)$	$128.5(2)$
$\mathrm{C}(3)-\mathrm{C}(3 \mathrm{a})-\mathrm{C}(7 \mathrm{aa})$	$100.9(2)$	$\mathrm{C}(3 \mathrm{ab})-\mathrm{C}(7 \mathrm{a})-\mathrm{C}(7)$	$120.6(2)$

planar to within $0.011 \AA$ and the dihedral angle between the two rings is $2 \cdot 0^{\circ}$. These effects are presumably due to molecular packing.

A stereoview of the molecular packing is given in Fig. 2. The molecules are arranged in layers nearly parallel to the $a c$ plane, the interlayer separation being approximately $3.4 \AA$; the molecules are held together by van der Waals forces.

The authors are deeply indebted to Professor L. Golič for his interest in this work. The financial support of the Research Community of Slovenia is gratefully acknowledged.

References

Abraham, D. J., Cochran, T. G. \& Rosenstein, R. D. (1971). J. Am. Chem. Soc. 93, 6279-6281.

Bamberger, E. (1899). Ber. Dtsch. Chem. Ges. 32, 17731797.

Cox, A. P., Thomas, L. F. \& Sheriden, J. (1958). Nature (London), 181, 1000-1001.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Hope, H. \& Black, K. T. (1972). Acta Cryst. B28, 36323634.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Main, P., Woolfson, M. M., Lessinger, L., Germain, G. \& Declerce, J. P. (1974). multan 74, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain-la-Neuve, Belgium.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The XRAY system - version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1978). B34, 295-298

1-p-Tolyl-4-(β-D-erythrofuranosyl)imidazoline-2-thione

By I. Barragán, A. López-Castro and R. Márquez
Departamento de Optica y Sección de Física del Departamento de Investigaciones Físicas y Químicas (Centro Coordinado del CSIC), Universidad de Sevilla, Spain

(Received 15 June 1977; accepted 27 July 1977)

Abstract. $\mathrm{SN}_{2} \mathrm{O}_{3} \mathrm{C}_{14} \mathrm{H}_{16}$, orthorhombic, space group $P 2_{12} 2_{1}{ }_{1}, a=26 \cdot 215$ (14), $b=7 \cdot 608$ (5), $c=7 \cdot 142$ (4) $\AA ; Z=4 ; D_{c}=1.36, D_{m}=1.37 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was solved by direct methods and refined by full-matrix
least-squares procedures to a final R of 0.040 . The sugar-ring puckering has the twist conformation ${ }_{3}^{2} T$. The molecules are linked by hydrogen bonds and van der Waals forces.

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32969 (9 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

